The prediction of lumbar spine geometry: method development and validation.
نویسندگان
چکیده
OBJECTIVES To develop and validate a new method of predicting the neutral lumbar spine curve from external (non-invasive electrogoniometer) measurements. BACKGROUND Non-invasive techniques for lumbar spine geometry prediction suffer from a lack of a complete geometry description, problems with applicability to field conditions, or both. METHODS The study consisted of three steps. First, utilizing lateral imaging (MRI and X-ray pictures) of the lumbosacral junction, the torso geometry was described using measures of lumbar lordosis via the Cobb method. Second, the relationship between imaging based measurement of lumbar spinal curvature and externally measured torso flexion angle in the sagittal plane using a goniometer was determined. Finally, method validation was performed with an independent set of nine subjects. The predicted lumbar spine curve was determined and the prediction errors were analyzed against the measured curves from digitized lateral X-ray images of the lumbosacral junction. RESULTS The shape of the lumbar curve was described as function of three externally measured parameters. The lumbar spine Cobb angle, segmental centroid positions (S(1)-T(12)), and segmental orientations were predicted from the external lumbar motion monitor measurements, with average precisions of 5.8 degrees , 4.4 mm, and 3.9 degrees , respectively. CONCLUSIONS The position and orientation of each segment (vertebrae and disc), along with the lumbar spine lordosis, can be predicted in the neutral posture using data from back angular measurements. RELEVANCE The consideration of the spine as a curve is necessary to accurately quantify and describe the forces acting along the (lumbar) vertebral column for any given loading. The method could be a very useful prediction tool for industrial and laboratory experiments, as well as analytical models.
منابع مشابه
The Development and Validation of New Equations for Prediction of the Performance of Tangential Cyclones
New equations have been developed to predict the effect of geometrical dimensions of tangential cyclones on their operational performances. To check the validity of the derived equations, an experimental apparatus was set up and some experimental work was performed. It was observed that the experimental results confirm properly the theoretical predictions.
متن کاملStress Analysis of the Human Ligamentous Lumber Spine-From Computer-Assisted Tomography to Finite Element Analysis
Detailed investigation on biomechanics of a complex structure such as the human lumbar spine requires the use of advanced computer-based technique for both the geometrical reconstruction and the stress analysis. In the present study, the computer-assisted tomography (CAT) and finite element method (FEM) are merged to perform detailed three dimensional nonlinear analysis of the human ligamentous...
متن کاملBeam Collimation during Lumbar Spine Radiography: A Retrospective Study
Introduction: Collimating the primary beam to the area of diagnostic interest (ADI) has been strongly recommended as an effective method to reduce patient’s radiation dose and to improve image quality during radiology practice. Lack or inadequate collimation results in excessive radiation dose to patients and deterioration image quality.Objective: To assess the quality of beam collimation dur...
متن کاملEvidence for Policy Making: Clinical Appropriateness Study of Lumbar Spine MRI Prescriptions Using RAND Appropriateness Method
Background MRI is a new and expensive diagnostic technology, which has been used increasingly all over the world. Low back pain is a worldwide prevalent disorder and MRI technique is one of the several ways to diagnose it. This paper aims to identify the appropriateness of lumbar spine MRI prescriptions in Shiraz teaching hospitals using standardized RAND Appropriateness Method (RAM) criteria i...
متن کاملTreatment of 44 Cases With Lumbar Spine Stenosis and Degenerative Instability: Outcomes of Surgical Intervention
Background and Aim: Degenerative lumbar spine disease can lead to lumbar spine instability. The patients can present with Low Back Pain (LBP), radicular pain, and motor and sensory dysfunction. Age >50, female sex and pregnancies are among prevalent risk factors. The degeneration process usually starts from the intervertebral discs progressing to involve facet joints, ligaments, and vertebral b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical biomechanics
دوره 20 5 شماره
صفحات -
تاریخ انتشار 2005